3.(1600) Unendliche Reihen

3.1(1600) Definition und Konvergenz

D3.1.1(1600)

- (.) Sei $(z_n)_{n=0}^{\infty} \subset K$ gegeben. Dann heißt die Folge $(S_n)_{n=0}^{\infty}$, definiert durch $S_n := \sum_{v=0}^n z_v$, $n \in N_0$, unendliche Reihe, für die kurz $\sum_{v=0}^{\infty} z_v$ geschrieben wird. S_n heißt die n-te Partialsumme von $\sum_{v=0}^{\infty} z_v$ und Z_n deren n-ter Summand.
- (..)Eine unendliche Reihe $\sum_{v=0}^{\infty}$ z_v heißt konvergent: \Leftrightarrow $\exists \lim_{n\to\infty} S_n = S \in \mathbf{K}. \text{ Dann schreibt man auch } S = \sum_{v=0}^{\infty} z_v.$ Andernfalls heißt $\sum_{v=0}^{\infty} z_v$ divergent.

Bem:1.) Das Symbol $\sum_{v=0}^{\infty}$ z_v ist generell nur Abkürzung für die Folge $\left(\sum_{v=0}^{n}z_v\right)_{n=0}^{\infty}$ und im Falle der Konvergenz bedeutet $\sum_{v=0}^{\infty}$ z_v zusätzlich $\lim_{n\to\infty}\sum_{v=0}^{n}$ z_v .

- 2.) Für meZ bedeutet $\sum_{v=m}^{\infty}\ z_v$ die Folge $\left(\sum_{v=m}^n z_v\right)_{n=m}^{\infty}$.
- 3.) Für $(a_n) \subset R$ ist uneigentliche Konvergenz von $\left(\sum_{v=0}^n a_v\right)_{n=0}^\infty \text{gegen } \infty \text{ oder } -\infty \text{ wie in } \textbf{D2.2.5} \text{ erklärt}$
- 4.) Ist $(S_n)_{n=0}^{\infty} \subset \mathbb{C}$ eine beliebige Folge, so ist mit $z_v := S_v S_{v-1}$, $v \in \mathbb{N}_0$, $S_{-1} := 0$, $S_n = \sum_{v=0}^n z_v \ n \in \mathbb{N}_0$, d.h. jede Folge lässt sich als Reihe schreiben.

Andere Formulierung:

Unendliche Reihen sind nichts anderes als Folgen (S_n) mit Zuwächsen $z_v := S_v - S_{v-1}$, $v \ge 1$, $z_0 = S_0$.

- **D3.1.2**(1602) Für ein $z \in K$ heißt $\sum_{k=0}^{\infty} z^k$ die geometrische Reihe.
- **S3.1.1**(1602) Die geometrische Reihe ist divergent \forall z \in **K** mit |z|>1. Sie konvergiert \forall z mit |z|<1 und es gilt $\sum_{k=1}^{\infty} |z^{k}| = \frac{1}{1-z^{2}} \forall |z|<1.$

S3.1.2(1602) Rechenregeln und Konvergenzkriterien für unendliche Reihen

Vor: Seien
$$(z_v)$$
, $(w_v) \subset C$ und $\sum_{v=0}^{\infty} z_v$, $\sum_{v=0}^{\infty} w_v$ konvergent.

Beh: Notwendige Konvergenzkriterien

Zu 1.) und 2.), siehe auch Bem unten

1.) Die Partialsumme $S_n = \sum_{v=0}^{n} z_v$, $n \in \mathbb{N}_0$, ist beschränkt.

Bew: Aus Konvergenz folgt Beschränktheit,

2.)
$$z_n \xrightarrow[n \to \infty]{} 0$$

3.) Ist $\sum_{k=p}^{n} z_k$ konvergent und ist $\lambda \in K$ beliebig, so ist

auch $\sum_{k=p}^{n} \lambda z_k$ konvergent und es gilt $\sum_{k=p}^{n} \lambda z_k = \lambda \sum_{k=p}^{n} z_k$.

4.) $\forall \alpha, \beta \in \mathbb{C}$ ist $\sum_{v=0}^{\infty} (\alpha z_v + \beta w_v) = \alpha \sum_{v=0}^{\infty} z_v + \beta \sum_{v=0}^{\infty} w_v$ konvergent.

5a) Für den Reihenrest gilt $R_m := \sum_{v=m+1}^{\infty} z_v = (\underbrace{\sum_{v=0}^{\infty} z_v}_{S_v \to S} - \underbrace{\sum_{v=0}^{m} z_v}_{=S_m}) \xrightarrow{m \to \infty} 0$, $m \in \mathbb{N}_0$,

d.h. es gilt $\lim_{m\to\infty} R_m = 0$.

Andere Formulierung und Verhalten z_k :

5b) Falls eine Reihe $\sum_{k=p}^{\infty}$ z_k in K konvergiert, folgt auch die Konvergenz

$$\text{von } \sum_{k=m}^{\infty} \ z_k \ \forall \ \text{m} \geq p \ \text{und es gilt} \quad \lim_{k \to \infty} z_k = 0 \text{,} \quad \lim_{m \to \infty} \sum_{k=m}^{\infty} \ z_k = 0 \text{.}$$

6.) Ist(n_k) $_{k=0}^{\infty}$ mit n_0 :=0, $n_k < n_{k+1}$, $k \in \mathbf{N}_0$ eine Teilfolge von

(n)
$$_{n=0}^{\infty}$$
 und setzt man $c_{v}:=\sum_{k=n_{v}}^{n_{v+1}-1}z_{k}$, $v\in N_{0}$, (zwischen n_{v} und n_{v+1}

gibt es einige $n_{\mbox{\tiny k}})$ so konvergiert die unendliche Reihe

 $\sum_{v=0}^{\infty} c_v \text{ und es gilt } \sum_{v=0}^{\infty} c_v = \sum_{k=0}^{\infty} z_k \text{ (d.h. in konvergenten Reihen darf man beliebig Klammern setzen).}$

Bem:1.) Cauchy-Konvergenzkriterium S2.4.2 für unendliche Reihen.

Sei
$$(z_n) \subset C$$
. $\sum_{\nu=0}^{\infty} z_{\nu}$ konvergiert $\Leftrightarrow \forall \mathcal{E} > 0 \exists n_1(\epsilon) \in \mathbb{N}$ mit

$$|\sum_{v=m+1}^{n} z_{v}| < \epsilon \quad \forall \quad n > m \ge n_{1}(\epsilon) \cdot (d.h. \mid S_{n} - S_{m}) \mid < \epsilon \quad \forall \quad n > m \ge n_{1}(\epsilon) \cdot .$$

Andere Formulierung:

Eine Reihe $\sum_{k=p}^{\infty} z_k$ in ${\sf K}$ ist genau dann konvergent, wenn

$$\forall \quad \mathcal{E} > 0 \quad \exists \quad \mathbb{N} \in \mathbb{R}_{+} \quad \forall \quad \text{n, $q \in \mathbb{N}$: $n \geq \max\{\mathbb{N}, q = 1\}$} \\ \underset{n+1 > N, n+}{\underbrace{gilt}} \\ \underset{\in \mathbb{N} \Rightarrow q \geq 1}{\underbrace{gilt}} \\ \underset{k=n+1}{\underbrace{\sum_{k=n+1}^{n+q} Z_{k}}} \left| < \epsilon \right| < \epsilon$$

$$|S_n-S_m|$$
 $=$ $\sum_{m=(n+q)\in\mathbb{N}} \left|\sum_{k=n+1}^{n+q} Z_k\right|$,

 $\forall \ \mathcal{E} > 0 \ \exists \ \mathbb{N} \in \mathbb{R}_{+} \ \forall \ \text{n,n+q} \in \mathbb{N} : \text{n,n+q} > \mathbb{N} \ \Rightarrow \ |S_{n} - S_{n+q}| < \epsilon$

2.)
$$\sum_{\nu=0}^{\infty}$$
 (-1) $^{\nu}$ ist divergent, da $s_{2n+1}=0$, $s_{2n}=1$ \forall $n \in \mathbb{N}_0$.

$$\sum_{v=0}^{\infty} ((-1)^{2v} + (-1)^{2v+1}) = \sum_{v=0}^{\infty} 0 = 0.$$

- **D3.1.3**(1605)Eine Summe der Form $\sum_{k=p}^{q}$ (b_k-b_{k+1}) heißt Teleskopsumme, eine Reihe derselben Form (also mit $q=\infty$) heißt Teleskopreihe.
- **S3.1.3**(1605)Eine Teleskopreihe konvergiert, wenn $(b_k) \in R$, eine Nullfolge ist und in diesem Fall ist der Wert gleich b_p .
- **D3.1.4**(1606) Eine Reihe $\sum_{k=p}^{\infty} a_k$ in R heißt alternierend, falls $a_k = (-1)^k |a_k|$ für alle $k \ge p$
- S3.1.4(1607) Leibniz Kriterium

Vor: $(a_n) \subset R$, $a_n \searrow 0 (n \rightarrow \infty)$.

Beh:
$$\sum_{n=0}^{\infty} (-1)^n a_n = a_0 - a_1 + a_2 - a_3 + \dots$$
 ist konvergent.

Mit
$$S_n := \sum_{v=0}^n (-1)^v a_v$$
, $n \in \mathbb{N}_0$ gilt $S_{2n} \setminus S_{2n+1} \nearrow$

Fehlerabschätzung $S_{2n}-S_{2n+1}=a_{2n+1}$, $S_{2n}-S_{2n-1}=a_{2n}$.

Bem: $[S_{2n+1}, S_{2n}]$, $n \in \mathbb{N}_0$ ist eine Intervallschachtelung, die sich

auf
$$S = \sum_{v=0}^{\infty} (-1)^v a_v$$
 zusammenzieht.

Andere Formulierung

Ist die Reihe $\sum_{k=p}^{n} a_k$ alternierend und ist die Folge $(|a_k|)_{k=q}^{\infty}$ für irgend ein $q \ge p$ eine monoton fallende Nullfolge, so ist die Reihe konvergent. Bezeichnet a den Wert der Reihe, so gilt immer $S_{2n+1} \le a \le S_{2n} \ \forall \ n \ge (q-1)/2$.

3.2(1700) Reihen mit nicht-negativen Gliedern, Absolut konvergente Reihen

s3.2.1(1700)

Seien $a_k \ge 0 \ \forall \ k \ge p$. Dann ist die Reihe $\sum_{k=p}^{\infty} a_k$ entweder konvergent oder bestimmt divergent, und der erste Fall tritt genau dann ein, wenn die Partialsummenfolge beschränkt ist.

D3.2.1(1700) $(z_n) \subset \mathbf{C}$. Die Reihe $\sum_{n=0}^{\infty} z_n$ heißt absolut konvergent: \Leftrightarrow $\sum_{n=0}^{\infty} |z_n|$ ist konvergent. Wegen S3.2.1 Schreibweise $\sum_{n=0}^{\infty} |z_n| < \infty$

s3.2.2(1700)

Vor: $(z_n)_{n=0}^{\infty}$, $(w_n)_{n=0}^{\infty} \subset C$ $a_n \ge 0$, $b_n \ge 0_{n=0}^{\infty} \subset R$, $n \in \mathbb{N}_0$. Beh:

1.) Jede absolut konvergente Reihe ist konvergent

$$\sum_{n=0}^{\infty} |z_n| \text{ konvergent } \Rightarrow \sum_{n=0}^{\infty} z_n \text{ konvergent.}$$

Bem:a) Konvergenz \Rightarrow absolute Konvergenz $\sum_{n=1}^{\infty} \frac{(-1)^k}{k} \text{ konvergent, } \sum_{n=1}^{\infty} \frac{1}{k} \text{ divergent}$

b) Insbesondere darf man bei absolut konvergenten Reihen rechnen wie bei konvergenten Reihen

c) Es gilt
$$|\sum_{n=0}^{\infty} z_n| \lesssim \sum_{s=0}^{\infty} |z_n|$$

2.) Majorantenkriterium

$$|z_n| \le b_n$$
, $\forall n \ge n_0$ und $\sum_{n=0}^{\infty} b_n$ konvergent $\Rightarrow \sum_{n=0}^{\infty} |z_n|$ konvergent

Andere Formulierung:

Aus $|z_k| \le b_k \ \forall \ k \ge p$ und $\sum_{k=p}^\infty \ b_k < \infty$ folgt die absolute Konvergenz der Reihe $\sum_{k=p}^\infty \ z_k$.

3.) Minorantenkriterium (MinK)

$$|z_n| \ge b_n \ge 0$$
 $\forall n \ge n_0$ und $\sum_{n=0}^n b_n = \infty \Rightarrow \sum_{n=0}^\infty |z_n| = \infty$

Andere Formulierung:

Gilt $\sum_{k=0}^{n}$ $b_k=\infty$ und $|z_k| \ge \frac{\tilde{c}}{C} b_k$ für fast alle k mit \forall $k \in \mathbb{N}_0$ mit $\tilde{c} > 0$, so ist $\sum_{k=0}^{n}$ $a_k=\infty$ (d.h. ab bestimmtem Index m)

4) Wurzelkriterium

4a)
$$\exists$$
 0\sqrt[n]{|z_n|} \le q \ \forall \ n \ge n_0 \Rightarrow \sum_{n=0}^{\frac{\gamma}{2}} |z_n| \text{ konvergent.}

$$\sqrt[n]{|z_n|} \ge 1$$
 für unendlich viele $n \in \mathbb{N} \Rightarrow \sum_{n=0}^{\infty} |z_n| = \infty$.

4b) Vor: In
$$\sum_{n=0}^{\infty} z_n$$
, $z_n \neq 0 \quad \forall n \geq n_0$

Beh.:(.)
$$\overline{\lim_{n\to\infty}} \sqrt[n]{|z_n|} < 1 \Rightarrow \sum_{n=0}^{\infty} z_n$$
 absolut konvergent.

$$(..) \overline{\lim_{n \to \infty}} \sqrt[n]{|z_n|} > 1 \Rightarrow \sum_{n=0}^{\infty} z_n \text{ divergent}$$

5) Quotientenkriterium

Vor: $z_n \neq 0$ ∀ $n \geq n_0$, $n \in \mathbb{N}$ und $\exists 0 < q < 1$

5a) Vor:
$$\bullet$$
 $\left|\frac{z_{n+1}}{z_n}\right| \le q < 1 \quad \forall \quad n \ge n_1 \ge n_0$ Beh: \bullet $\sum_{n=0}^{\infty} |z_n| < \infty$.

Vor:
$$\bullet \bullet \left| \frac{Z_{n+1}}{Z_n} \right| \ge 1 \quad \forall n \ge n_2$$
 Beh: $\bullet \bullet \sum_{n=0}^{\infty} |Z_n| = \infty$

5b) Beh:
$$\bullet$$
 $\overline{\lim_{n\to\infty}} \left| \frac{z_{n+1}}{z_n} \right| < 1 \, \forall n \ge n_1 \ge n_0 \Rightarrow \sum_{n=0}^{\infty} |z_n| < \infty \, (\sum_{n=0}^{\infty} z_n \text{ absolut konvergent})$

• •
$$\frac{\lim_{n \to \infty} \left| \frac{Z_{n+1}}{Z_n} \right| > 1 \quad \forall n \ge n_2 \Rightarrow \sum_{n=0}^{\infty} |z_n| = \infty \text{ divergent}$$

Achtung!

Will man das Wurzel- oder Quotientenkriterium anwenden, so darf man sich nicht mit dem Nachweis begnügen, dass

$$\sqrt[n]{|z_n|}$$
 bzw $\left|\frac{|z_{n+1}|}{|z_n|}\right|$ fast immer <1 ist. Es ist vielmehr unumgänglich, eine feste

postive Zahl q<1 aufzufinden und die ab einer Stelle nicht mehr von $\sqrt{|z_n|}$

<1 sind, aber doch beliebig nahe an 1 herankommen, versagen beide
Kriterien (sie bringen keine Entscheidung):</pre>

 \sum $\frac{1}{n}$ divergiert, \sum $\frac{1}{n^2}$ konvergiert - aber in beiden Fällen strebt sowohl

die Wurzel als auch die Quotientenfolge gegen 1.

Bem: D2.4.2'' Bem 4.) ⇒

Falls Quotientenkriterium anwendbar, so ist auch Wurzelkriterium anwendbar. Umkehrung gilt iA nicht.

Das Wurzelkriterium ist mächtiger als das Quotientenkriterium.

Falls $\lim_{n\to\infty} \left| \frac{z_{n+1}}{z_n} \right| = 1$, macht es keinen Sinn, das Wurzelkriterium zu

$$\text{probieren: } 1 = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| \leq \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} \leq \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} \leq \underline{\lim}_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1 \ \Rightarrow \ \underline$$

keine Entscheidung mit dem Wurzelkriterium möglich. Es gilt sogar $\lim_{n\to\infty}\sqrt[n]{|a_n|}=1$ da auch $\lim_{n\to\infty}\sqrt[n]{|a_n|}=1$

Bem:1.)Beide Kriterien verlangen "schnelle", d.h. geometrische Konvergenz, d.h. $|z_n| \le cq^n$ mit q<1,c>0,

$$|R_n| \le c \sum_{k=n+1}^{\infty} q^k = c \ q^{n+1} \sum_{k=0}^{\infty} \ q^k = \frac{c}{1 - q} q^{n+1}$$
.

2.) Gilt $\lim_{n\to\infty} \sqrt[n]{|z_n|} \ge 1 \Rightarrow \exists$ Teilfolge $|z_{n_k}| \to \infty \Rightarrow$ Divergenz

Gilt
$$\frac{\lim_{n\to\infty}\frac{Z_{n+1}}{Z_n}>1$$
 \Rightarrow Divergenz $\leftarrow \left|\frac{Z_{n_k+1}}{Z_{n_k}}\right|\geq 1$

3.) Falls
$$\lim_{n \to \infty} \sqrt[n]{|z_n|} = 1$$
 bzw $\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = 1$, so kann

Divergenz oder Konvergenz für $\sum_{n=0}^{\infty} z_n$ vorliegen.

$$\text{Bem:} \sum_{k=0}^{\infty} |z_k| < \infty \Rightarrow \not= \sum_{k=0}^{\infty} |z_k|^2 < \infty$$

\$3.2.3(1717) Cauchy-Schwarz-Ungleichung

Vor:
$$(z_n)$$
, $(w_n) \subset C$, $\sum_{n=0}^{\infty} |z_n|^2 < \infty$, $\sum_{n=0}^{\infty} |w_n|^2 < \infty$

$$\text{Beh:} \sum_{n=0}^{\infty} \mid z_n w_n \mid <\infty \text{ und es gilt } \left|\sum_{n=0}^{\infty} z_n w_n\right| \leq \sum_{n=0}^{\infty} \mid z_n w_n \mid \leq \sqrt{\sum_{n=0}^{\infty} \left|z_n\right|^2} \sqrt{\sum_{n=0}^{\infty} \left|w_n\right|^2}$$

S3.2.4(1719) Verdichtungssatz von Cauchy

Vor:
$$(a_n) \subset R$$
, $a_n \setminus$

Beh:
$$\sum_{n=0}^{\infty} a_n$$
 konvergent $\Leftrightarrow \sum_{n=0}^{\infty} 2^n a_{2^n}$ konvergent

Andere Formulierung:

Sei $(a_k)_{n=1}^{\infty}$ eine monoton fallende Nullfolge in R, und sei $b_k=2^ka_{2^k}$ für $k\geq 0$. Dann sind $\sum_{k=1}^{\infty}$ a_k und $\sum_{k=0}^{\infty}$ b_k entweder beide konvergent oder beide bestimmt divergent.

D3.2.2 (1750)

1.) Sei $(z_v) \subset C$, dann heißt $\sum_{v=0}^{\infty} w_v$ eine Umordnung von $\sum_{v=0}^{\infty} z_v$: \Leftrightarrow \exists eine bijektive Abbildung $\phi \colon N_0 \to N_0$ mit $w_v = z_{\varphi(v)} \quad \forall \ v \in N_0$.

Andere Formulierung:

Für jede bijektive Abbildung $\Phi: {\sf N} {
ightarrow} {\sf N}$ heißt $\sum_{k=1}^\infty \ z_{\Phi(k)}$ eine Umordnung der

Reihe
$$\sum_{k=1}^{\infty} z_k$$
.

sie bedingt konvergent.

2.) Eine Reihe heißt unbedingt konvergent, falls jede ihrer Umordnungen gegen den gleichen Grenzwert konvergiert. Ist eine Reihe konvergent, aber nicht unbedingt konvergent, so heißt

Bsp:
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$
 ist bedingt konvergent, #da $\sum_{k=1}^{\infty} \frac{(-1)^{2k-1}}{2k-1} + \sum_{k=1}^{\infty} \frac{(-1)^{2k}}{2k} = ?$

Andere Formulierung 1.) für reelle Zahlen:

Seien $(a_k)_{k\in\mathbb{N}}$, $(a_k)_{k\in\mathbb{N}}$ 2 Folgen reeller Zahlen. Dann heißt $\sum_{k=1}^{\infty} a_k$ eine

Umordnung der Reihe $\sum_{k=1}^{\infty} a_k$, wenn $a'_{\ell} = a_{k_{\ell}} \quad \forall \ \ell \in \mathbb{N}$,

$$\underbrace{k}_{eineFunktion}: \mathbb{N} \rightarrow \mathbb{N}$$
, $k(\ell) = k_{\ell}$ bijektiv, d.h. $\sum_{k=1}^{\infty} a_{k} \underbrace{\longrightarrow}_{UmordnungderGlieder} \sum_{k=1}^{\infty} a_{k}$

S3.2.5(1750) Absolut konvergente Reihen sind auch unbedingt konvergent $\text{Vor:Sei}(z_v) \overset{\infty}{\underset{v=0}{\longrightarrow}} \subset C \text{ und } \sum_{v=0}^{\infty} |z_v| \overset{\longrightarrow}{\underset{v\to\infty}{\longrightarrow}} S < \infty.$

Aussage: Für jede Umordnung $\sum_{\phi(v)=0}^{\infty} z_{\phi(v)} \text{ von } \sum_{v=0}^{\infty} z_{v} \text{ gilt } \sum_{\phi(v)=0}^{\infty} |z_{\phi(v)}| = \sum_{v=0}^{\infty} |z_{v}| = \overline{S} < \infty$ und $S = \sum_{\phi(v)=0}^{\infty} z_{\phi(v)} = \sum_{v=0}^{\infty} z_{v}$

Bem: 1.)
$$\sum_{\nu=0}^{\infty} |a_{\nu}| < \infty \Leftrightarrow \sum_{\nu=0}^{\infty} |\text{Rea}_{\nu}| < \infty \text{ und } \sum_{\nu=0}^{\infty} |\text{Ima}_{\nu}| < \infty$$
2.)
$$(a_{\nu})_{\nu=1}^{\infty} \subset \mathbb{R}, \quad \sum_{\nu=0}^{\infty} |a_{\nu}| = \infty, \quad \sum_{\nu=0}^{\infty} a_{\nu} \text{ konvergent,}$$

$$a_{\nu}^{+} = \frac{1}{2} (|a_{\nu}| + a_{\nu}), \quad a_{\nu}^{-} = \frac{1}{2} (|a_{\nu}| - a_{\nu}), \quad \nu \in \mathbb{N}_{0} \Rightarrow$$

$$a_{\nu} = a_{\nu}^{+} - a_{\nu}^{-} \& \sum_{\nu=0}^{\infty} a_{\nu}^{+} = \sum_{\nu=0}^{\infty} a_{\nu}^{-} = \infty$$

$$\forall \text{ S} \in \mathbb{R}_{+} \cup_{-}^{+} \infty \text{ J Umordnung } b_{\nu} = a_{\phi(\nu)}, \quad \nu \in \mathbb{N}_{0}:$$

$$\sum_{\nu=0}^{\infty} b_{\nu} = \mathbb{S} \text{ (bzw } \overline{\lim_{n \to \infty}} \sum_{\nu=0}^{n} b_{\nu} = \mathbb{S}_{2} \ge \mathbb{S}_{1} = \lim_{n \to \infty} \sum_{\nu=0}^{n} b_{\nu})$$

S3.2.6(1753) Riemannscher Umordnungssatz

Sei eine Reihe $\sum\limits_{k=1}^\infty$ a_k in R gegeben, welche konvergent, aber nicht absolut konvergent ist. Sei weiter $a\in\overline{\mathbb{R}}$ beliebig vorgegeben. Dann existiert eine Umordnung $\sum\limits_{k=1}^\infty$ $a\Phi_{(k)}$, welche konvergiert bzw bestimmt divergiert und den Wert a hat.

Andere Formulierung

Vor: $a_k \in \mathbb{R}$, $\sum_{k=0}^{\infty} a_k$ konvergent, $\sum_{k=0}^{\infty} |a_k|$ nicht konvergent

Aussage: \exists Umordnung $\sum_{k=0}^{\infty}$ b_k : von $\sum_{k=0}^{\infty}$ a_k : $S = \sum_{k=0}^{\infty}$ b_k für S beliebige Zahl, d.h. die Reihensumme ändert sich beim Umordnen, ist also nicht unbedingt konvergent.

\$3.2.5&6 (1756)

Absolut konvergente Reihen - und nur diese - sind auch unbedingt konvergent

Bem:

1.) Ist eine Doppelsumme $\sum_{\ell,k=1}^{\infty} a_{k_{\ell}}$ absolut konvergent, dann darf die Summationsreihenfolge vertauscht werden.

2.)
$$\sum_{\nu=0}^{\infty} |z_{\nu}| < \infty \Leftrightarrow \sum_{\nu=0}^{\infty} |\text{Re } z_{\nu}| < \infty \text{ und } \sum_{\nu=0}^{\infty} |\text{Im } z_{\nu}| < \infty$$

3.) Sei
$$(a_v) \subset R$$
, $\sum_{v=0}^{\infty} |a_v| = \infty$ und $\sum_{v=0}^{\infty} a_v$ konvergent.

$$\text{Sei} \ a_{\nu}^{+} := \frac{1}{2} \left(\mid \mathsf{a}_{\nu} \mid + \mathsf{a}_{\nu} \right) \ \land \ a_{\nu}^{-} := \frac{1}{2} \left(\mid \mathsf{a}_{\nu} \mid - \mathsf{a}_{\nu} \right), \ \nu \in \mathsf{N}_{0} \Rightarrow$$

$$a_v = a_v^+ - a_v^-$$
, $|a_v| = a_v^+ + a_v^- \wedge \sum_{v=0}^{\infty} a_v^+ = \sum_{v=0}^{\infty} a_v^- = \infty$.

 $\forall \text{ S}{\in}R \text{ oder S}{=}{\pm}\infty \text{ \exists eine Umordnung b$}_{\nu}{=}a_{\phi(\nu)}\text{, }\nu{\in}N_{\text{0}}\text{, mit}$

$$\sum_{v=0}^{\infty} b_v = S \quad (bzw \quad \overline{\lim_{n \to \infty}} \sum_{v=0}^{\infty} b_v = S_2 \ge S_1 = \underline{\lim_{n \to \infty}} \sum_{v=0}^{\infty} b_v)$$

Doppelreihen

D3.2.3(1765)

// D2.5.1(1550) Doppelfolge reeller (komplexer) Zahlen // Abbildung a:
$$N^2 \mapsto R \#(C)\#$$
: $(n,m) \mapsto z_{nm}$, $(z_{nm}) \stackrel{\infty}{n,m} = 0$

 $\sum_{k,\ell=1}^{\infty}$ z_{kl} mit z_{kl} Doppelfolge reeller (komplexer) Zahlen nach D2.5.1 heißt Doppelreihe. Mögliche Bezeichnungen.

$$z_{nm} \in \mathbb{R} \# (\mathbb{C}) \#$$
, $\sum_{n,m=1}^{\infty} z_{nm} := (S_{nm}) \sum_{n,m=1}^{\infty} , S_{nm} := \sum_{k=1}^{n} \sum_{l=1}^{m} z_{kl} \ \forall \ n,m \in \mathbb{N}.$

D3.2.4 (1765)

- $(S_{kl})_{k,l=1}^{\infty} \underset{k,l\to\infty}{\longrightarrow} S \in \mathbb{R} \# (C) \# : \sum_{k,l=1}^{\infty} z_{kl} \text{ heißt konvergent und } \sum_{k,l=1}^{\infty} z_{kl} = S = \lim_{k,l\to\infty} S_{kl}.$
 - • $\sum_{k,l=0}^{\infty} z_{kl}$ heißt absolut konvergent: $\sum_{k,l=1}^{\infty} |z_{kl}|$ konvergiert, $\sum_{k,l=0}^{\infty} |z_{kl}| < \infty$

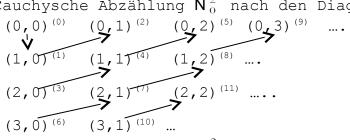
Schreibweisen: Absolutpartial summe:

 $\overline{S}_{nm} = \sum_{k=1}^{n} \sum_{l=1}^{m} |z_{kl}|,$

Folge der Absolutpartialsummen:

 $(\overline{S}_{nm})_{n,m=1}^{\infty}$.

2.) Cauchysche Abzählung N_0^2 nach den Diagonalen $\Delta_n := \{ (k,l) \mid k+l=n \}$



Bijektive Abb $\varphi \colon \mathsf{N}_0 \to \mathsf{N}_0^2$ mit $\varphi(0) := (0,0)$ und ist $\varphi(\mathsf{j}) = (\mathsf{k},\mathsf{l}) \Rightarrow$

$$\varphi(j+1) := \begin{cases} (k-1,l+1) & f \ddot{u} r k \neq 0 \\ (l+1,0) & f \ddot{u} r k = 0 \end{cases}.$$

Allgemein: Sei ϕ =(k,1): N \mapsto N², ϕ (j)=(k(j),1(j)) \forall j \in N eine Abzählung von N², d.h. eine bijektive Abb von N in N². Berechnung des Wertes $\sum_{k,l=1}^{\infty} z_{kl} \text{ durch Berechnung des Wertes der Abzählung } \sum_{k,l=1}^{\infty} z_{k(j)1(j)} \text{ mit S3.2.7}$

s3.2.7 (1767)

Aussagen: \bullet $\sum_{k,l=1}^{\infty}$ $|\mathbf{z}_{kl}|$ $\stackrel{=}{\underset{D3.2.4}{\longleftarrow}}$ \mathbf{S} \Leftrightarrow $\sum_{j=1}^{\infty}$ $|\mathbf{z}_{k(j)1(j)}|$ $\stackrel{=}{\underset{D3.2.4}{\longleftarrow}}$ \mathbf{S} \Rightarrow \bullet \bullet $\sum_{k,l=1}^{\infty}$ $\mathbf{z}_{kl}=\sum_{j=1}^{\infty}$ $\mathbf{z}_{k(j)1(j)}$

$$\mathbf{S3.2.8} \text{ (1768)} \quad \sum_{k,\ell=1}^{\infty} \ \mathbf{z}_{k,l} = \mathbf{S} = \lim_{k,\ell\to\infty} \mathbf{S}_{k,l} \quad \left\{ \begin{aligned} &und \bullet \sum_{\ell=1}^{\infty} z_{k\ell} = z_k \ \forall k \in N \underset{S2.5.2}{\Rightarrow} \sum_{k=1}^{\infty} \left(\sum_{\ell=1}^{\infty} z_{k\ell} \right) \\ &und \bullet \bullet \sum_{k=1}^{\infty} z_{k\ell} = z_{\ell} \ \forall \ell \in N \underset{S2.5.2}{\Rightarrow} \sum_{k=1}^{\infty} \left(\sum_{\ell=1}^{\infty} z_{k\ell} \right) \end{aligned} \right\} = \sum_{k,\ell=1}^{\infty} \ \mathbf{z}_{k\ell} = \mathbf{S}$$

S3.2.9(1769) Cauchyscher Doppelreihensatz

Vor:
$$(z_{kl})_{k,l=1}^{\infty} \in \mathbb{C}$$
, $S_{nm} := \sum_{k=1}^{n} \sum_{l=1}^{m} z_{kl} \ \forall \ n,m \in \mathbb{N}$, $\sum_{k,l=1}^{\infty} z_{kl} := (S_{nm})_{n,m=1}^{\infty}$.

Bezeichnungen k Zeilenindices, ℓ Spaltenindices

Aussage:
$$\sum_{k,l=1}^{\infty} |z_{kl}|$$
 konvergiert $\Leftrightarrow \sum_{k=1}^{\infty} (\sum_{\ell=1}^{\infty} |z_{k\ell}|)$ konvergiert, d.h.

Zeilenreihen $\sum\limits_{\ell=1}^\infty$ $\mid z_{k\ell} \mid$ konvergieren \forall k \in N

$$\left| \sum_{k=1}^{\infty} |\sum_{\ell=1}^{\infty} z_{k\ell}| \le \sum_{k=1}^{\infty} (\sum_{\ell=1}^{\infty} |z_{k\ell}|) < +\infty \right|$$

$$\Rightarrow$$
 $\sum_{\ell=1}^{\infty}$ ($\sum_{k=1}^{\infty}$ | $z_{k\ell}$ | konvergiert, d.h.

 $\Leftrightarrow \sum_{\ell=1}^{\infty} \left(\sum_{k=1}^{\infty} |z_{k\ell}| \text{ konvergiert, d.h.} \right)$ $\text{Spaltenreihen } \sum_{k=1}^{\infty} |z_{k\ell}| \text{ konvergieren } \forall \ \ell \in \mathbb{N}$

$$\sum_{\ell=1}^{\infty} |\sum_{k=1}^{\infty} z_{k\ell}| \leq \sum_{\ell=1}^{\infty} (\sum_{k=1}^{\infty} |z_{k\ell}|) < +\infty$$

Andere Formulierung frei nach Skript Uni Greifswald

Zusammenhang zwischen $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} z_{ij}$, $\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} z_{ij}$, $\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} z_{f(k)}$?

Vor: $z_{ij} \in \mathbb{C}$, i, $j \in \mathbb{N}$, $f : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ bijektiv

 $\exists \ \mathsf{K} \in \mathsf{R} \ \forall \ \mathsf{endliche} \ \mathsf{\underline{M}} \subset \mathsf{N} \times \mathsf{N} \colon \sum_{(i,j) \in M} |z_{\mathsf{i}\mathsf{j}}| \leq \mathsf{K}.$

Jede Zeilensumme $Z_i := \sum_{i=0}^{\infty} z_{ij}$ konvergiert Aussagen: ●

• • Jede Spaltensumme $S_j := \sum_{i=0}^{\infty} z_{ij}$ konvergiert

• • • $\sum_{i=0}^{\infty} Z_i$ und $\sum_{j=0}^{\infty} S_j$ konvergieren. $\sum_{i=0}^{\infty} Z_i = \sum_{j=0}^{\infty} S_j = : S_j$

 $\bullet \bullet \bullet \sum_{k=1}^{\infty} z_{f(k)} = S$

Bem:m Bezeichnung: $S = \sum_{ij}^{\infty} z_{ij}$

Bem und S3.2.5 \Rightarrow \forall bij f \exists \bullet \bullet \bullet \bullet $S = \sum_{k=0}^{\infty} z_{f(k)}$.

Andere Formulierung

Vor: $z_{kl} \in C$, $k, l \in N_0$, $M := \sup \{ \sum_{k=0}^{n} \sum_{k=0}^{n} |z_{kl}| : n \in N \} < \infty$

Beh: $\sum_{k=0}^{\infty}$ ($\sum_{l=0}^{\infty}$ z_{kl}), $\sum_{k=0}^{\infty}$ ($\sum_{k=0}^{\infty}$ z_{kl}), $\sum_{k=0}^{\infty}$ ($\sum_{k,l=0}$ z_{kl}) konvergieren absolut und haben denselben Grenzwert.

Andere Formulierung frei nach Uni Dortmund $Vor: z_{ij} \in K \#C\#$, $i, j \in N$,

 \exists Abzählung ((c_i)_{i\in N} aller Elemente $z_{ij}\colon \sum_{i=1}^\infty$ c_i absolut konvergent. Aussage:

- Zeilensummen $Z_i = \sum_{j \in N}^{\infty} z_{ij}$ absolut konvergent
- • Spaltensummen $S_j = \sum_{i=N}^{\infty} z_{ij}$ absolut konvergent
- • Es gilt $\sum_{i=1}^{\infty} Z_i = \sum_{j=1}^{\infty} S_j = \sum_{i=1}^{\infty} C_i = \sum_{i,j=1}^{\infty} Z_{ij}$.

\$3.2.9'(1779) Großer Umordnungssatz

(Originalfassung siehe unten "Andere Formulierung")

Vor: J abzählbar unendliche Menge #von Indices#,

Abb in K j \mapsto a $_{\mathsf{j}}\colon$ $\sum_{j\in J}$ a $_{\mathsf{j}}$ absolut konvergent,

Menge J_k , $k \in \mathbb{N}$ ist Zerlegung von J.

Aussage: \bullet $\sum_{j \in J_k}$ a_j absolut konvergent \bullet \bullet $\sum_{j \in J}$ $a_j = \sum_{k=1}^{\infty}$ $(\sum_{j \in J_k}$ $a_j)$

Andere Formulierung:

Sei J eine abzählbar unendliche Menge und seien J_k , $k \in \mathbb{N}$, eine Zerlegung von J. Sei ferner $j \mapsto a_j$ eine Abb von J in K, so, dass $\sum_{j \in \mathbb{J}} a_j$ absolut konvergent $(\sum_{j \in \mathbb{J}} |a_j| < \infty)$.

Dann konvergieren auch alle (*) $\sum_{j \in J_k} a_j$, $j \in J_k$ absolut und es gilt

$$(**)$$
 $\sum_{j \in J} a_j = \sum_{k=1}^{\infty} (\sum_{j \in J_k} a_j)$

Bem:1.)Es darf $S=\pm\infty$ gesetzt werden.

- 2.) Ist eine Doppelsumme $\sum_{\ell,k=1}^{\infty}$ $a_{k_{\ell}}$ absolut konvergent, dann darf die Summationsreihenfolge vertauscht werden.
- S3.2.10(1781) Vertauschung von Grenzwerten

Vor:Seien Zahlen $a_{nk} \in K \ \forall \ n,k \ge 0$ gegeben, derart dass folgendes gilt:

- a) \exists $b_k \in \mathbb{R}_+$, für die gilt: $|a_{nk}| \leq b_k \quad \forall n, k \geq 0$, $\sum_{k=0}^{\infty} b_k < \infty$.
- b) Für jedes feste $k \ge 0$ ist die Folge $(a_{nk})_{n=0}^{\infty}$ konvergent und der Grenzwert sei mit a_k bezeichnet.

Aussage: \bullet $\sum_{k=0}^{\infty}$ a_{nk} , für jedes $n \ge 0$, und $\sum_{k=0}^{\infty}$ a_{k} absolut konvergent und es gilt

- $\bullet \quad \bullet \quad \lim_{n \to \infty} \sum_{k=0}^{\infty} \quad a_{nk} = \sum_{k=0}^{\infty} \quad a_{k}.$
- D3.2.5(1782) Expotentialfunktion für komplexe Zahlen:

$$\exp(z) = \sum_{k=0}^{\infty} z^{k}/k! \quad \forall z \in C.$$

- S3.2.11 (1783) Expotential reihe
 - Die Reihe $\sum_{k=0}^{\infty} z^k/k!$ ist für alle $z \in \mathbb{C}$ absolut konvergent.
 - • \forall $z \in \mathbb{R}$ gilt weiter $\sum_{k=0}^{\infty} z^k / k! = \exp(z) = \lim_{n \to \infty} (1 + z/n)^n$.
- **S3.2.12**(1783) Ist $\sum_{n=0}^{\infty} a_n$ absolut konvergent, so sind es auch die Reihen $\sum_{n=0}^{\infty} a_{2n}$ und $\sum_{n=0}^{\infty} a_{2n+1}$ und es gilt $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_{2n} + \sum_{n=0}^{\infty} a_{2n+1}$.
- **D3.2.6**(1784) Für Reihen $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ in K heißt die Reihe $\sum_{k=0}^{\infty} c_k$ mit $c_k = \sum_{j=0}^k a_{k-j}b_j = \sum_{j=0}^k b_{k-j}a_j$ \forall $k \ge 0$ das Cauchy-Produkt der Ausgangsreihen.
- S3.2.13(1784) Cauchy-Produktsatz

Vor: Seien (z_n) , $(w_n) \subset \mathbb{C}$ und $\sum_{n=0}^{\infty} |z_n| < \infty$ abs konv, $\sum_{n=0}^{\infty} |w_n| < \infty$ abs konv.

Beh:Ordnet man alle Produkte $z_j w_k$, j, $k \in \mathbb{N}_0$ in einer Folge $(P_\ell)_{\ell=0}^{\infty}$ an #wie z.B unten nach 2.)#, so gilt

1.)
$$\sum_{\ell=0}^{\infty} |P_{\ell}| = (\sum_{j=0}^{\infty} |z_{j}|) (\sum_{k=0}^{\infty} |w_{k}|)$$
 und $\sum_{\ell=0}^{\infty} P_{\ell} = (\sum_{j=0}^{\infty} z_{j}) (\sum_{k=0}^{\infty} w_{k})$

2.) Speziell gilt

$$\sum_{n=0}^{\infty} (\sum_{j=0}^{n} z_{j} w_{n-j}) = \lim_{n \to \infty} (\sum_{j=0}^{n} z_{j}) (\sum_{k=0}^{n} w_{k}) = (\sum_{j=0}^{\infty} z_{j}) (\sum_{k=0}^{\infty} w_{k}).$$

Gilt nicht, $\sum_{j=0}^{\infty} z_j$, $\sum_{k=0}^{\infty} w_k$ wenn konvergent, aber nicht abs konverget Andere Formulierung:

Vor: (z_n) , $(w_n) \subset C$ und $\sum_{n=0}^{\infty} |z_n| < \infty$, $\sum_{n=0}^{\infty} |w_n| < \infty$.

Beh: Dann ist mit $c_k = \sum_{v=0}^k z_v w_{k-v}$, $k \in \mathbb{N}$, die unendliche Reihe $\sum_{k=0}^{\infty} c_k$

absolut konvergent und es gilt: $\sum_{k=0}^{\infty}$ $c_k = (\sum_{\nu=0}^{\infty}$ $z_{\nu}) (\sum_{\mu=0}^{\infty}$ $w_{\mu})$.

Andere Formulierung frei nach Skript Uni Greifswald

Vor: $\sum_{n=0}^{\infty} \stackrel{Z_n}{\leftarrow} \text{ und } \sum_{n=0}^{\infty} \stackrel{W_n}{\leftarrow} \text{ absolut konvergent,}$

Aussage: $\sum_{i,j=0}^{\infty} z_i w_j = \sum_{n=0}^{\infty} \frac{d_n}{\sum_{i=0}^{n} z_i w_{n-i}} = (\sum_{i=0}^{\infty} z_i) (\sum_{j=0}^{\infty} w_j)$

Andere Formulierung

Sind die Reihen $\sum_{k=0}^{\infty}$ a_k und $\sum_{k=0}^{\infty}$ b_k beide absolut konvergent

und gilt D3.2.6, so folgt die absolute Konvergenz von $\sum_{k=0}^{\infty}$ c_k und es gilt

$$\sum_{k=0}^{\infty} c_k = (\sum_{k=0}^{\infty} a_k) (\sum_{k=0}^{\infty} b_k)$$

3.3(1800) Dual- und Dezimalzahlen

Im Folgenden sei $g \in \mathbb{N} \setminus \{1\}$ fest gegeben.

D3.3.1(1800) Die Zahl g heiße im Weiteren die Basis(für die g-adische Zahldarstellung). Die ganzen Zahlen 0,1,...,g-1 heißen die Ziffern der Darstellung.

Eine Reihe der Form $\sum_{k=1}^{\infty} z_k/g^k$ heißt die g-adische Reihe, falls die z_k Ziffern sind (also $z_k \in \{0,1,\ldots,g-1\}\ \forall\ k$) und falls $z_k < g-1$ für unendlich viele k gilt.

Offenbar ist jede g-adische Reihe konvergent, denn $\sum_{k=1}^{\infty}$ (g-1)/g^k ist eine konvergente Majorante:

$$\sum_{k=1}^{\infty} \frac{g-1}{g^k} < \sum_{k=1}^{\infty} \frac{g}{g^k} = \sum_{k=1}^{\infty} \frac{1}{g^{k-1}} = \sum_{k=0}^{\infty} \frac{1}{g^k} = \sum_{k=0}^{\infty} \left(\frac{1}{g}\right)^k \text{ konv., da geom Reihe.}$$

Im Fall g=10 sprechen wir auch von Dezimalreihen, für g=2 von Dualreihen und für g=16 von Hexadezimalreihen.

#Sinn der Festlegung: $z_k < g-1$ für unendlich viele k siehe S3.3.1#

\$3.3.1(1801)g-adische Zahldarstellung reeller Zahlen (siehe auch A3.3.4) Jedes $\xi \in [0,1)$ besitzt eine eindeutige Darstellung als g-adische Reihe, d.h. es gibt eindeutig bestimmte $z_k \in \{0,1,\ldots,g-1\}$ mit $z_k < g-1$ (siehe Bem 2.) unten) für unendlich viele $k \in \mathbb{N}$, sodass $\xi = \sum_{k=1}^{\infty} z_k/g^k$.

Zusammenfassung:

$$r_0 \in [0,1)$$
, $g \ge 2$, $y = \sum_{k=1}^{\infty} z_k/g^k$, ∞ viele $z_k < g^{-1}$: $r_{k_0} = \sum_{k_0+1}^{\infty} z_k/g^k < g^{-k_0} \quad \forall k_0 \in \mathbb{N}$.

Bem:1.)Diese Darstellung heißt Dezimalbruchentwicklung, falls g=10, Dualbruchentwicklung, falls g=2.

2.) Verlangt man nur $z_k \le g-1$, so geht die Eindeutigkeit

verloren:
$$g^{-k_0+1} = \sum_{v=k_0}^{\infty} \frac{g-1}{g^v}$$
2 Darstellungen für die gleiche Zah

S3.3.2(1803) Das Intervall [0,1) ist überabzählbar

D3.3.2(1803) Wir nennen manchmal eine g-adische Reihe auch g-adische Entwicklung einer Zahl und schreiben $\sum_{k=0}^{\infty} z_k/g^k=0$, $z_1z_2z_3$...

Für g=10 bzw g=2 bzw g=16 sprechen wir auch von einer dezimalen bzw dualen bzw hexadezimalen Darstellung einer Zahl.

Eine solche Entwicklung heißt periodisch, falls es $k_0, p \in \mathbb{N}$ gibt, für welche $z_{k+p} = z_k \ \forall \ k \geq k_0$. Das kleinste p mit dieser Eigenschaft heißt auch die Periodenlänge der Entwicklung.

S3.3.3(1805) Die g-adische Entwicklung einer Zahl $\xi \in [0,1)$ ist genau dann periodisch, wenn $\xi \in \mathbb{Q}$ ist.

Bem:(.)Es gilt $x_nb^{-n} = \sum_{v=n}^{\infty} a_vb^{-v}$

$$(\text{da nach}(\alpha) \ \, x_n b^{-n} = x - \sum_{v=m}^{n-1} \ \, a_v b^{-v} = \sum_{v=m}^{\infty} \ \, a_v b^{-v} - \sum_{v=m}^{n-1} \ \, a_v b^{-v} = \sum_{v=n}^{\infty} \ \, a_v b$$

3.4(1900) Abelsche partielle Summation

S3.4.1(1900) (Abelsche partielle Summation)

Vor: (w_v) $_{\nu=0}^{\infty}$, (z_v) $_{\nu=0}^{\infty}$ $\subset C$, $A_n:=\sum_{v=0}^n$ w_v , $n{\in}N_0$

Beh:
$$\sum_{v=0}^{n} w_{v} z_{v} = \sum_{v=0}^{n} A_{v} (z_{v} - z_{v+1}) + A_{n} z_{n+1}$$

 $\text{Bem:} \sum_{v=0}^{\infty} \ \text{A}_v (z_v - z_{v+1}) \text{ konvergent & } \exists \ \lim_{n \to \infty} \ \text{A}_n z_{n+1} \Rightarrow \sum_{v=0}^{\infty} \ \text{w}_v z_v \text{ ist kvgt}$

\$3.4.2(1900) Dirichlet-Kriterium (DirK). Siehe auch S3.4.4

Bez: (a_n) 0 bedeutet monoton fallend und $\lim_{n\to\infty} a_n=0$

Vor: $a_n \in \mathbb{R}$, $(a_n) \underset{n=0}{\sim} \mathbf{a}$ 0 (d.h. $a_n \ge 0$) ^

$$\exists k>0: B_n=\sum_{k=0}^n b_k, |B_n| \leq k, b_n \in C, (b_n) \underset{n=0}{\infty} \forall n$$

Beh: $\sum_{k=0}^{\infty} a_k b_k$ ist konvergent.

\$3.4.3(1901) (Konvergenzkriterium von Du Bois-Reymond)

 $\text{Vor:} (w_{\nu}) \text{,} (z_{\nu}) \subseteq C \text{,} \quad \sum_{\nu=0}^{\infty} |z_{\nu} - z_{\nu+1}| < \infty \text{ und } \sum_{\nu=0}^{n} w_{\nu} \text{ kvgt } (A_{n} = \sum_{\nu=0}^{n} w_{\nu} \underset{n \to \infty}{=} A)$

 $\text{Beh:(.)} \exists \ \lim_{n \to \infty} z_n \text{, (..)} \sum_{v=0}^{\infty} \ |A_v(z_v - z_{v+1})| < \infty \ \text{und (...)} \sum_{v=0}^{\infty} \ w_v z_v \ \text{ist kvgt}$

Bem: Spezialfall

Sei (w_v) $_{\nu=1}^{\infty} \subset C$, (z_v) $_{\nu=1}^{\infty} \subset R$, (z_v) $_{\nu=1}^{\infty}$ monoton & beschränkt,

$$\sum_{v=0}^{\infty} w_{v} \text{ konvergent } \Rightarrow \sum_{v=0}^{\infty} w_{v}z_{v} \text{ konvergent}$$

S3.4.4(1902) Konvergenzkriterium nach Dedekind

 $\text{Vor:} (w_v) \underset{v=0}{\overset{\infty}{\sim}} \text{, } (z_v) \underset{v=0}{\overset{\infty}{\sim}} \subset \textbf{C} \text{, } \sum_{v=0}^{\overset{\infty}{\sim}} |z_v - z_{v+1}| < \infty \text{, } z_n \underset{n \to \infty}{\overset{\longrightarrow}{\rightarrow}} 0 \text{ und sei } \left(\sum_{v=0}^n w_v\right)^{\overset{\infty}{\sim}} \text{beschränkt.}$

 $\text{Beh}: \sum_{v=0}^{\infty} \ w_v z_v = \sum_{v=0}^{\infty} \ A_v (z_v - z_{v+1}) \ \text{konvergiert, wobei} \ \sum_{v=0}^{\infty} \ |A_v (z_v - z_{v+1})| < \infty, \ \forall n \in \textbf{N}_0.$

Bem: S3.4.2(1900) Dirichlet-Kriterium (DirK): Vor: $a_n \in \mathbb{R}$, $(a_n) \Big|_{n=0}^{\infty} \setminus 0$ (d.h. $a_n \geq 0$) &

 $\exists k>0: W_n=\sum_{k=0}^n w_k, |W_n| \leq k, w_n \in C, (w_n) \Big|_{n=0}^\infty \forall n$

Beh: $\sum_{k=0}^{\infty} a_k w_k$ ist konvergent,

 $\sum_{k=0}^{\infty} |A_k(a_k - a_{k+1})| < \infty \quad \& \quad \sum_{k=0}^{\infty} w_k a_k = \sum_{k=0}^{\infty} A_k(a_k - a_{k+1})|.$

Ist Sonderfall von S3.4.4

Zusammenfassung

Vor:

Für alle: $a_n \in \mathbb{R}$, w_v , $z_v \in \mathbb{C}$, $k \in \mathbb{R}$, k > 0, $A_n = \sum_{n=0}^{\infty} w_v$ $n \in \mathbb{N}_0$

S3.4.1 (Abel) **S3.4.2** (DirK)

3.4.3 (DBR)

S3.4.4 (Dedekind)

$(\mathtt{W_v}) \ _{\nu=0}^{\infty}$,	(a_n) $\sum_{n=0}^{\infty} 0$ $(a_n \ge 0)$	$\sum_{v=0}^{\infty} z_v - z_{v+1} < \infty$	$\sum_{v=0}^{\infty} z_v - z_{v+1} < \infty$
$(z_v) \stackrel{\infty}{\underset{\nu=0}{\sim}} \subset C$			$z_n \xrightarrow[n \to \infty]{} 0$.
	$\left \sum_{k=0}^{n} z_{k} \right \leq k$	$A_n = A_{n \to \infty} A$ (konv)	$\left \left(\sum_{\nu=0}^{n} w_{\nu} \right)_{n=0}^{\infty} \right \le k$
		$\sum_{v=0}^{\infty} z_{v}-z_{v+1} < \infty$	

Aussagen:

$\sum_{v=0}^{n} w_{v} z_{v} =$	$\sum_{k=0}^{\infty} a_k z_k konv$	$\exists \lim_{n\to\infty} z_n$,	
$ \underbrace{\sum_{\nu=0}^{\infty} A_{\nu}(z_{\nu} + z_{\nu+1})}_{*konv} + $		$\sum_{v=0}^{\infty} A_v (z_v - z_{v+1}) < \infty$	$\sum_{v=0}^{\infty} A_v(z_v-z_{v+1}) < \infty$
$\underbrace{A_n Z_{n+1}}_{* \exists \lim_{n \to \infty} A_n Z_{n+1}} \underset{Falls *}{\Longrightarrow}$			$\sum_{v=0}^{\infty} A_v (z_v - z_{v+1}) =$
$\star : \sum_{v=0}^{n} w_{v} z_{v} \text{ konv}$		$\sum_{{ m v}=0}^{\infty}$ ${ m w_{v}z_{v}}$ konv	$\sum_{ u=0}^{\infty}$ w $_{ m v}$ z $_{ m v}$ konvergent

3.5(2000) Potenzreihen

- **D3.5.1**(2000) Sei $(a_k)_{k=0}^{\infty} \subset \mathbb{C}$ und $z_0 \in \mathbb{C}$. Dann heißt $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ für $z \in \mathbb{C}$ eine <u>Potenzreihe</u>(PR)<u>um</u> Entwicklungspunkt z_0 und Koeffizienten a_k , $k \in \mathbb{N}_0$.
- **S3.5.1**(2000) Gegeben sei eine Potenzreihe $\sum_{k=0}^{\infty} a_k (z-z_0)^k$. Dann gilt:
 - a) Die Reihe konvergiert trivialerweise für $z=z_0$ und ihr Wert ist gleich $a_0\,(z_0-z_0)=a_0\,0^0=a_0$
 - b) Ist die Reihe für ein $z=z_1\neq z_0$ konvergent, so ist sie absolut konvergent \forall $z\in \mathbb{C}$ mit $|z-z_0|<|z_1-z_0|$
- **S3.5.2**(2001) Zu jeder Potenzreihe $\sum_{k=0}^{\infty}$ $a_k(z-z_0)^k$ \exists genau eine Zahl R mit $0 \le R \le \infty$, der <u>Konvergenzradius</u> (KR) der PR, mit der Eigenschaft:

$$\sum_{k=0}^{\infty} a_k (z-z_0)^k \begin{cases} konvergiert \ absolut \ \forall z \in C \ mit \ |z-z_0| < R \\ divergiert \end{cases} \forall z \in C \ mit \ |z-z_0| > R$$

Ferner gilt R=1/ $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ (Formel von Cauchy-Hadamard), wobei $\frac{1}{O}:=\infty$, $\frac{1}{\infty}:=0$

- Bem:1.) $|z-z_0|=\infty$ \forall $z\in \mathbb{C}$ bedeutet $\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}=0$, $1/0:=\infty$ $|z-z_0|=0$ bedeutet hier Konvergenz nur in z_0 gegen a_0 .
 - 2.) Das Konvergenzverhalten der PR für $|z-z_0|=R$ muss im Spezialfall untersucht werden.

Andere Formulierung:

Sei eine Potenzreihe $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ gegeben, und sei $R=1/\overline{\lim_{n\to\infty} \sqrt[n]{|a_n|}}$ ihr Konvergenzradius. Dann ist die Reihe absolut konvergent \forall $z\in \mathbb{C}$ mit $|z-z_0|< R$ und divergent \forall $z\in \mathbb{C}$ mit $|z-z_0|> R$, wobei für R=0 die erste und für $R=\infty$ die 2. Menge leer ist.

\$3.5.3(2004)Gleichmäßige Konvergenz von Potenzreihen Sei eine Potenzreihe $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ mit einem Konvergenzradius R>0 gegeben und sei $0 < r < R \Rightarrow \frac{1}{R} < \frac{1}{r}$. Dann konvergiert die Potenzreihe gleichmäßig für alle z mit $|z-z_0| \lesssim r$.

Andere Formulierung aus wikiversity:

Es sei $(c_n)_{n\in\mathbb{N}}$ eine Folge komplexer Zahlen und a \in C.

Die Potenzreihe $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ sei für eine komplexe Zahl

z=b, b \neq a, konvergent (d.h. |z-z₀| < R mit R=1 / $\overline{\lim_{n\to\infty}} \sqrt[n]{|a_n|}$)

Dann ist für jeden reellen Radius r mit 0 < r < |b-a| die Potenzreihe f(z) auf der abgeschlossenen Kreisscheibe B(a,r) punktweise absolut und gleichmäßig konvergent

Andere Formulierung:

Sei $0<\delta<1/r-1/R$. Nach Def $\overline{\lim_{n\to\infty}}$ gilt $\sqrt[n]{|a_n|} \le \delta + (1/R) < 1/r \ \forall \ n\ge n_0$, woraus Für $|z-z_0|\le r$ folgt, dass $|z-z_0||a_n|\le r^n(\delta+1/R)^n \ \forall \ n\ge n_0$. Wegen $r(\delta+1/R)<1$ folgt Beh mit dem Majorantenkriterium für gleichmäßige Konvergenz.

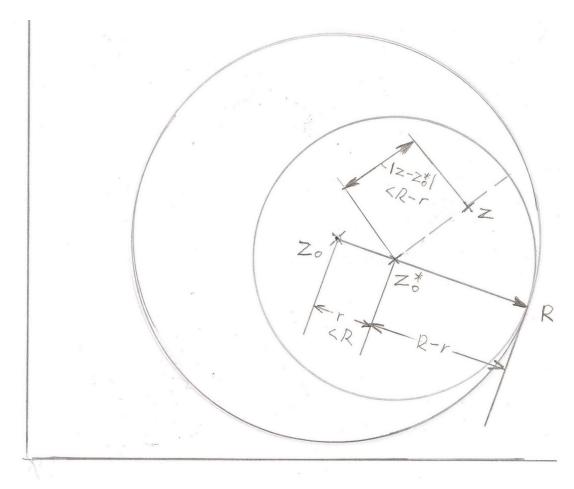
- **S3.5.4**(2005) Vor:Sei(a_n) $\sum_{n=0}^{\infty} \subset \mathbb{C}$, a_n $\neq 0 \quad \forall n \geq n_0$ (fast alle), $\exists \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ Beh:In **S3.5.2** gilt $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$
- **S3.5.5**(2050) Vor: $\sum_{n=0}^{\infty} a_n (z-z_0)^n \& \sum_{n=0}^{\infty} b_n (z-z_0)^n$ haben KR R bzw ρ
 - 1.) dann besitzen die "differenzierte" Reihe $\sum_{n=1}^{\infty}$ na_n(z-z₀)ⁿ⁻¹ und die "integrierte" Reihe $\sum_{n=1}^{\infty}$ $\frac{a_n}{(n+1)}$ (z-z₀)ⁿ⁺¹ denselben KR R
 - 2.) Mit $c_n := \sum_{k=0}^n a_k b_{n-k}$, $n \in \mathbb{N}_0$ gilt $\forall z \in \mathbb{C}$ mit $|z-z_0| < \min\{R, \rho\}$:

 $\sum_{n=0}^{\infty} c_n (z-z_0)^n = (\sum_{j=0}^{\infty} a_j (z-z_0)^j) (\sum_{k=0}^{\infty} b_k (z-z_0)^k) \quad \text{(Cauchy- Produkt),}$ wobei alle 3 Reihen absolut konvergieren.

Der KR von $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ ist daher $\geq \min\{R, \rho\}$

Bez:Die Folge (c_n) nennt man Faltung der Folgen (a_n) und (b_n)

S3.5.7(2053) (Umentwicklung einer PR)



Vor:Die PR $\sum_{n=0}^{\infty}$ $a_n(z-z_0)^n$ habe KR R>0. Sei $z^{\frac{*}{0}}$ mit $|z_0-z^{\frac{*}{0}}|=r < R$ fest gewählt.

Beh: \forall z \in C mit $|z-z|^{\frac{\star}{0}}|<$ R-r gilt $\sum_{n=0}^{\infty}$ $a_n(z-z_0)^n=\sum_{k=0}^{\infty}$ $b_k(z-z|^{\frac{\star}{0}})^k$, wobei \forall k \in N₀, $b_k:=\sum_{n=0}^{\infty}\binom{v}{k}a_n(z_0^*-z_0^*)^{v-k}$ absolut konvergiert

\$3.5.8(2056) (Abelscher Grenzwertsatz)

Vor:Die PR $\sum_{k=0}^{\infty} a_k x^k$ habe KR 1 & $\sum_{k=0}^{\infty} a_k$ konvergent.

 $\text{Beh:} \ \forall \ \text{Folgen} \ (x_n) \subset (1,-1) \subset R \ \text{mit} \ x_n \overset{n \to \infty}{\longrightarrow} 1 \ \text{gilt} \ \lim_{n \to \infty} \sum_{k=0}^{\infty} \ a_k x_n^k = \sum_{k=0}^{\infty} \ a_k.$

$$\begin{split} \text{Bem:S3.5.6 2.)} &\Rightarrow \frac{1}{1-z} \sum_{k=0}^{\infty} \ a_k z^k = (\sum_{j=0}^{\infty} \ 1^* z^j) \ (\sum_{k=0}^{\infty} \ a_k z^k) \ \# \sum_{S3.5.62.}^{\infty} \sum_{n=0}^{\infty} \ \sum_{k=0}^{n} \ 1^* a_{n-k} z^n \\ &= \sum_{n=0}^{\infty} \ z^n \sum_{k=0}^{n} \ 1^* a_{n-k} \ \# = \sum_{n=0}^{\infty} \ z^n \sum_{k=0}^{n} \ 1^* a_k = \sum_{n=0}^{\infty} \ A_n z^n \ \text{für} \ |z| < 1. \end{split}$$

Andere Formulierung:

Seien $a_k \in \mathbb{R}$ so, dass die Reihe $\sum_{k=0}^{\infty} a_k$ konvergiert. Dann

konvergiert $\sum_{k=0}^{\infty} a_k x^k \ \forall \ x \in (-1,1]$ (Konvergenzradius 1), und es

$$\text{gilt } \lim_{x \to 1} \sum_{k=0}^{\infty} \ a_k x^k \!\!=\! \sum_{k=0}^{\infty} \ a_k.$$

3.6(2100) Spezielle Potenzreihen und Funktionen

Sachverhalte von S3.6.1 bis D3.6.1 werden teilweise ab D3.6.2 noch einmal entwickelt, jedoch aus etwas anderer Definitionsgrundlage.

S3.6.1(2100) Eigenschaften der komplexen Expotentialfunktion

1.)
$$\forall z \in \mathbb{C} \text{ gilt } \exp(z) = e^{z} = \lim_{n \to \infty} (1 + z/n)^{n} = \sum_{v=0}^{\infty} \frac{z^{v}}{v!}$$
.

2.) $\forall z_1, z_2 \in \mathbb{C}$ gilt $e^{z_1+z_2} = e^{z_{12}} e^{z_2}$ (Additionstheorem, Funktionalgleichung) Andere Formulierung:

$$\forall z_1, z_2 \in C: \exp(z_1+z_1) = \exp(z_1) \exp(z_2)$$

3.)
$$\overline{(e^z)} = e^{\overline{z}}$$
, $|e^z| = e^{Rez}$, $e^z \neq 0$, $e^{-z} = \frac{1}{e^z}$ $\forall z \in \mathbb{C}$.

4.)
$$|e^z|=1$$
 $\stackrel{\Leftrightarrow}{\underset{3}{\rightleftharpoons}}$ Re $z=0$

5.) \forall $n \in \mathbb{N}$ und \forall $x \in \mathbb{R}$ ist $\exp(nx) = [\exp(x)]^n$, $\exp(x/n) = \sqrt{\exp(x)}$ $(\frac{x}{e^n})^n = e^x$, $(\exp(\frac{x}{n}))^n = \exp(x)$

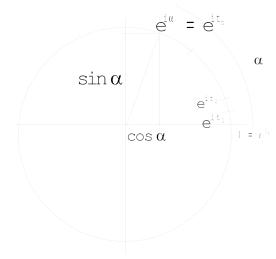
S3.6.2 (2103)

Vor: Sei $\alpha \in \mathbb{R}$, $\alpha > 0$ und der Kreisbogen \mathbf{C}_{α} : Summe der $e^{i\Delta t}$, $e^{it} \neq e^{i\alpha} \forall 0 \leq t \leq \alpha$. \forall n \in N sei Z_n :0=t₀<t₁...<t_n= α mit Δ t_v:=t_v-t_{v-1}= α /n für

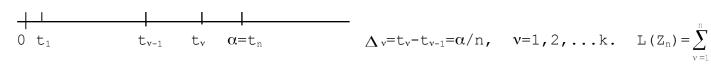
v=1,2,..., eine Zerlegung von $[0,\alpha]$ und $L(Z_n):=\sum_{v=0}^n |e^{it_v}-e^{it_{v+1}}|$.

Beh: $\exists L_{\alpha} := \lim_{n \to \infty} L(Z_n)$ und es gilt $L_{\alpha} = \alpha$. $\#_{z}^{e} = e^{i\alpha} = e^{iL_{\alpha}} \#_{z}^{e}$

$$\#_{z}^{e} = e^{i\alpha} = e^{iL_{\alpha}} \#$$



gleichschenkliges Dreieck $\overrightarrow{}$ Kreissektor Δ t $_{v}$ $e^{\mathrm{i}\alpha} = \mathrm{Re} \ e^{\mathrm{i}\alpha} + \mathrm{i} \ (\mathrm{Im} \ e^{\mathrm{i}\alpha}) \ , \quad \mathrm{Z_n} = 0 = t_0 < t_1 < t_2 < \ldots t_{v-1} < t_v < \ldots < t_n = \alpha$



$$\Delta_{\nu}=t_{\nu}-t_{\nu-1}=\alpha/n$$
, $\nu=1,2,...k$. $L(Z_n)=\sum_{n=1}^{\infty}$

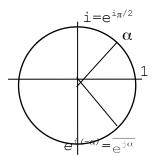
$$\mid e^{\mathrm{i} t_v} - e^{\mathrm{i} t_{v+1}} \mid = \sum_{v=1}^n \quad \mid \underbrace{e^{\mathrm{i} t_{v+1}}}_{1} \mid \mid e^{\mathrm{i} \nabla_v} - 1 \rvert = \sum_{v=1}^n \quad \mid e^{\mathrm{i} \nabla_v} - 1 \rvert \; .$$

Wo liegen e^{it_v} , v=0,1,...,n. Abstände gleich groß gewählt.

Ein anderes Vorgehen bei den folgenden Definitionen und Sätzen, ohne S3.6.2, siehe P44f

D3.6.1(2104) Sei 2π der Umfang des Einheitskreises. Dann heißt $\alpha \in (-\pi, \pi]$ der Bogenmaß-Winkel des Kreisbogens von 1 nach $\mathrm{e}^{\mathrm{i} lpha}$ auf dem Einheitskreis. Wegen $e^{i(\alpha+k2\pi)}=e^{i\alpha}$ \forall k \in Z sei α geradlinig von $(-\pi,\pi]$ auf R fortgesetzt.

Bem:In D3.6.1 wird bei $\alpha>0$ der Einheitskreis von 1 bis $e^{i\alpha}$ entgegen dem Uhrzeigersinn (Math pos) durchlaufen. $e^{i\alpha}$ =Re $e^{i\alpha}$ +Im $e^{i\alpha}$ Länge Bogenmaß entspricht Winkel



D3.6.2 (2105)

1.) ∀ α∈**R** sei

cos α :=Re $e^{i\alpha}=1/2$ ($e^{i\alpha}+e^{-i\alpha}$) und sin α :=Im $e^{i\alpha}=\frac{1}{2i}$ ($e^{i\alpha}-e^{-i\alpha}$).

Bem:Mit Rechenregeln für komplexe Zahlen folgt für $x \in \mathbb{R}$:

- 1.) $e^{ix} = \cos x + i * \sin x$
- 2.) $cos^2x+sin^2x=1$
- 3.) $|\cos x|, |\sin x| \le 1$ und $\sin 0 = 0$, $\cos 0 = 1$
- 2.) Allgemeiner sei $\forall z \in \mathbb{C}$
- cos z:=1/2 ($e^{iz}+e^{-iz}$) und sin z:= $\frac{1}{2i}$ ($e^{iz}-e^{-iz}$)

Andere Formulierung

• • sin
$$z := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - + \dots$$

cos z:=
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - + \dots$$

Bem:(.)Beide Potenzreihen konvergieren absolut \forall z \in C...

Für sin:
$$\sqrt[n]{a_n} = \begin{cases} 0, nungeade \\ \frac{1}{\sqrt[n]{n!}}, nungerade \end{cases} \Rightarrow \rho = \frac{1}{0} = \infty, \dots$$
 ähnlich für cos

$$(\ldots) \begin{cases} \cos x \in R \\ \sin x \in R \end{cases} \forall x \in \mathbb{R}_{+}$$

Verbindung • ⇔ • siehe S3.6.3 2.) Gleichungen ⊗

3.)
$$\forall$$
 z \in C mit cos z \neq 0 sei tan z:= $\frac{\sin z}{\cos z}$ (tangens z)

 \forall $z \in C$ mit $\sin z \neq 0$ sei cot $z := \frac{\cos z}{\sin z}$ (cotangens z)

- **S3.6.3**(2106) Eigenschaften der trigonometrischen Funktionen \forall z=x+iy, z₁,z₂ \in C gilt:
- 1.) Grundlage D3.6.2 2.) $\exp(iz) = e^{iz} = \cos z + i \sin z$ (Eulersche Formel), $e^z = e^x e^{iy} = e^x (\cos y + i \sin y)$.

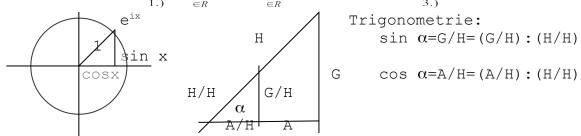
 $\forall \ x \in R \ \text{gilt: } \exp(\mathrm{i} x) = \mathrm{e}^{\mathrm{i} x} = \underbrace{\cos x}_{\in R} + \mathrm{i} \underbrace{\sin x}_{\in R} \Rightarrow \cos x = \mathrm{Re}(\mathrm{e}^{\mathrm{i} x}), \ \sin x = \mathrm{Im}(\mathrm{e}^{\mathrm{i} x})$

2.) cos z=cos (-z) =
$$\sum_{\nu=0}^{\infty}$$
 (-1) $^{\nu}$ $\frac{z^{2\nu}}{(2\nu)!}$, gerade Funktion, KR= ∞ .

 $\sin z = -\sin(-z) = \sum_{\nu=0}^{\infty} (-1)^{\nu} \frac{z^{2^{\nu+1}}}{(2^{\nu} + 1)!}, \text{ ungerade Funktion, } KR = \infty.$

$$\otimes$$
 cos z=1/2(e^{iz}+e^{-iz}) = $\sum_{v=0}^{\infty}$ (-1)^v $\frac{z^{2v}}{(2v)!}$ = cos(-z), entsprechend

- 3.) $\cos(z_1+z_2) = \cos z_1 \cos z_2 \sin z_1 \sin z_2$ (Additionstheoreme) $\sin(z_1+z_2)=\sin z_1\cos z_2-\cos z_1\sin z_2$ Funktionalgleichungen) speziell: $\sin^2 z + \cos^2 z = 1$.
- 4.) $\forall x \in \mathbb{R}$: $|e^{ix}| = |\cos x + i \sin x = \sqrt{\sin^2 x + \cos^2 x} = 1$



Trigonometrie: $\sin \alpha = G/H = (G/H) : (H/H)$

- 5.) $\cos 0 \neq 1$, $\sin 0 = 0$, $\cos \pi/2 = 0$, $\sin \pi/2 = 1$, $e^{i\frac{\pi}{2}} = i$, $\cos \pi = -1$, $\sin \pi = 0$, $\cos 3\pi/2 = 0$, $\sin 3\pi/2 = -1$, $e^{-i\frac{\pi}{2}} = -i$.
- 6.) $\cos(z+\pi) = -\cos z$, $\sin(z+\pi) = -\sin z$, $\cos(z+k2\pi) = \cos z$, $\sin(z+k2\pi)=\sin z$, $e^{z+i2k\pi}=e^z$ $\forall k\in\mathbb{Z}$.
- 7.) $\tan (z_1+z_2) = \frac{\tan z_1 + \tan z_2}{1 \tan z_1 \tan z_2}$
- 8.) \forall z=x+iy \in C gilt cos²z+sin²z=1, |e^z|=e^{Re z}

D3.6.4(2105) Hyperbolische Funktionen

cosh $z:=1/2(e^z+e^{-z}) \quad \forall z \in \mathbb{C} (Cosinus hyperbolicus)$

 $sinh z:=1/2(e^z-e^{-z}) \quad \forall z \in \mathbb{C} (Sinus hyperbolicus)$

tanh $z := \frac{\sinh z}{\cosh z}$, $\forall z \in \mathbb{C}$, cosh $z \neq 0$ (Tangens hyperbolicus)

coth $z := \frac{\cosh z}{\sinh z}$, $\forall z \in \mathbb{C}$, cosh $z \neq 0$ (Cotangens hyperbolicus)

- **S3.6.4**(2108) Eigenschaften der hyperbolischen Funktionen $\forall z, z_1, z_2 \in \mathbb{C}$ gilt:
- 1.)cos z=cosh(iz), sin z= $\frac{1}{i}$ sinh(iz), e^z=cosh z+sinh z
- 2.)cosh z=cosh(-z)= $\sum_{\nu=0}^{\infty} \frac{z^{2\nu}}{(2\nu)!}$, gerade Funktion.

 $\sinh z = -\sinh (-z) = \sum_{\nu=0}^{\infty} \frac{z^{2\nu+1}}{(2\nu + 1)!}, \text{ ungerade Funktion}$ KR R= ∞

- 3.) $\cosh(z_1+z_2) = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2$ (Additionstheoreme) $\sinh(z_1+z_2) = \sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2$ $speziell: cosh^2z sinh^2z = 1$
- 4.)Auf R gilt: cosh $x\neq 0$, sinh $x=0 \Leftrightarrow x=0$

Bem: $\cos z$ und $\sin z$ sind in C nicht beschränkt.

Beachte:cos ix=cosh x, $x \in R$

